Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 508
Filter
1.
PLoS One ; 16(11): e0259760, 2021.
Article in English | MEDLINE | ID: mdl-34748601

ABSTRACT

Urea is a byproduct of the urea cycle in metabolism and is excreted through urine and sweat. Ammonia, which is toxic at low levels, is converted to the safe storage form of urea, which represents the largest efflux of nitrogen from many organisms. Urea is an important nitrogen source in agriculture, is added to many industrial products, and is a large component in wastewater. The enzyme urease hydrolyzes urea to ammonia and bicarbonate. This reaction is microbially mediated in soils, hydroponic solutions, and wastewater recycling and is catalyzed in vivo in plants using native urease, making measurement of urea environmentally important. Both direct and indirect methods to measure urea exist. This protocol uses diacetyl monoxime to directly determine the concentration of urea in solution. The protocol provides repeatable results and stable reagents with good color stability and simple measurement techniques for use in any lab with a spectrophotometer. The reaction between diacetyl monoxime and urea in the presence of sulfuric acid, phosphoric acid, thiosemicarbazide, and ferric chloride produces a chromophore with a peak absorbance at 520 nm and a linear relationship between concentration and absorbance from 0.4 to 5.0 mM urea in this protocol. The lack of detectable interferences makes this protocol suitable for the determination of millimolar levels of urea in wastewater streams and hydroponic solutions.


Subject(s)
Diacetyl/analogs & derivatives , Urea , Colorimetry , Urease
2.
Dev Dyn ; 250(12): 1759-1777, 2021 12.
Article in English | MEDLINE | ID: mdl-34056790

ABSTRACT

BACKGROUND: Biomechanical stimuli are known to be important to cardiac development, but the mechanisms are not fully understood. Here, we pharmacologically disrupted the biomechanical environment of wild-type zebrafish embryonic hearts for an extended duration and investigated the consequent effects on cardiac function, morphological development, and gene expression. RESULTS: Myocardial contractility was significantly diminished or abolished in zebrafish embryonic hearts treated for 72 hours from 2 dpf with 2,3-butanedione monoxime (BDM). Image-based flow simulations showed that flow wall shear stresses were abolished or significantly reduced with high oscillatory shear indices. At 5 dpf, after removal of BDM, treated embryonic hearts were maldeveloped, having disrupted cardiac looping, smaller ventricles, and poor cardiac function (lower ejected flow, bulboventricular regurgitation, lower contractility, and slower heart rate). RNA sequencing of cardiomyocytes of treated hearts revealed 922 significantly up-regulated genes and 1,698 significantly down-regulated genes. RNA analysis and subsequent qPCR and histology validation suggested that biomechanical disruption led to an up-regulation of inflammatory and apoptotic genes and down-regulation of ECM remodeling and ECM-receptor interaction genes. Biomechanics disruption also prevented the formation of ventricular trabeculation along with notch1 and erbb4a down-regulation. CONCLUSIONS: Extended disruption of biomechanical stimuli caused maldevelopment, and potential genes responsible for this are identified.


Subject(s)
Biomechanical Phenomena/drug effects , Diacetyl/analogs & derivatives , Heart/embryology , Zebrafish , Animals , Animals, Genetically Modified , Biomechanical Phenomena/physiology , Diacetyl/pharmacology , Embryo, Nonmammalian/drug effects , Embryonic Development/drug effects , Embryonic Development/genetics , Gene Expression Regulation, Developmental/drug effects , Heart/drug effects , Heart/physiology , Hydrodynamics , Myocardial Contraction/drug effects , Myocardium/metabolism , Organogenesis/drug effects , Organogenesis/genetics , Organogenesis/physiology , Stress, Mechanical , Zebrafish/embryology , Zebrafish/genetics
3.
J Agric Food Chem ; 69(15): 4509-4517, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33829784

ABSTRACT

The aim of this study was to improve our knowledge on the chemical markers of Cognac aromas. We report results concerning the distribution and sensorial impact of 3-methyl-2,4-nonanedione (MND), a well-known compound in aged red wine, reminiscent of anise or "dried fruit", according to its concentration. We assayed first this diketone (solid-phase microextraction (SPME)-gas chromatography (GC)/mass spectrometry (MS), chemical ionization (CI)) in many Cognac samples followed by grappa, brandy, rum, whisky, vodka, and fruit spirits, and concentrations ranged from traces to 11.2 µg/L. Highest concentrations were obtained in grappa and freshly distilled eaux-de-vie of Cognac samples. Exceeding its detection threshold (100 ng/L, 70 vol %), MND contributes to the anise descriptor of these spirits. Its concentration decreased over aging while being highly correlated with the total amount of fatty acid ethyl ester. In addition, we showed that MND was produced during distillation according to the oxidation state of the white wine as well as the amount of lees used.


Subject(s)
Alcoholic Beverages , Wine , Alcoholic Beverages/analysis , Alkanes/analysis , Diacetyl/analogs & derivatives , Odorants/analysis , Wine/analysis
4.
Virology ; 553: 9-22, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33197754

ABSTRACT

During an infection, Cauliflower mosaic virus (CaMV) forms inclusion bodies (IBs) mainly composed of viral protein P6, where viral activities occur. Because viral processes occur in IBs, understanding the mechanisms by which they are formed is crucial. FL-P6 expressed in N. benthamiana leaves formed IBs of a variety of shapes and sizes. Small IBs were dynamic, undergoing fusion/dissociation events. Co-expression of actin-binding polypeptides with FL-P6 altered IB size distribution and inhibited movement. This suggests that IB movement is required for fusion and growth. A P6 deletion mutant was discovered that formed a single large IB per cell, which suggests it exhibited altered fusion/dissociation dynamics. Myosin-inhibiting drugs did not affect small IB movement, while those inhibiting actin polymerization did. Large IBs colocalized with components of the aggresome pathway, while small ones generally did not. This suggests a possible involvement of the aggresome pathway in large IB formation.


Subject(s)
Caulimovirus/physiology , Inclusion Bodies, Viral/physiology , Trans-Activators/metabolism , Actin Cytoskeleton/metabolism , Cell Membrane/metabolism , Coiled Bodies/metabolism , Diacetyl/analogs & derivatives , Diacetyl/pharmacology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Inclusion Bodies, Viral/ultrastructure , Microfilament Proteins/metabolism , Mutation , Plant Leaves/virology , Protein Domains , Nicotiana/virology , Trans-Activators/chemistry , Trans-Activators/genetics
5.
Food Chem ; 305: 125486, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31520920

ABSTRACT

The formation of 3-methyl-2,4-nonanedione (MND) during red wine aging can contribute to the premature evolution of aroma, characterized by the loss of fresh fruit and development of dried fruit flavors. The identification of two new hydroxy ketones, 2-hydroxy-3-methylnonan-4-one (syn- and anti-ketol diastereoisomers) and 3-hydroxy-3-methyl-2,4-nonanedione (HMND), prompted the investigation of the precursors and pathways through which MND is produced and evolves. An HS-SPME-GC-MS method was optimized for their quantitation in numerous must and wine samples, providing insight into the evolution of MND, HMND, and ketols through alcoholic fermentation and wine aging. Alcoholic fermentation resulted in a significant decrease in MND and HMND and the simultaneous appearance of ketol diastereoisomers. The analysis of 167 dry red wines revealed significant increases in MND and anti-ketol contents through aging and a significant positive correlation between MND and anti-ketols. Additional experiments demonstrated that ketols are precursors to MND during red wine oxidation.


Subject(s)
Alkanes/chemistry , Diacetyl/analogs & derivatives , Fruit and Vegetable Juices/analysis , Ketones/analysis , Wine/analysis , Alkanes/metabolism , Diacetyl/chemistry , Diacetyl/metabolism , Ethanol/chemistry , Gas Chromatography-Mass Spectrometry , Humans , Hydrogen-Ion Concentration , Ketones/isolation & purification , Limit of Detection , Solid Phase Microextraction , Stereoisomerism , Time Factors
6.
J Biomol Struct Dyn ; 38(4): 997-1011, 2020 03.
Article in English | MEDLINE | ID: mdl-30938659

ABSTRACT

A novel Schiff base ligand (2-iminothiophenol-2,3-butanedione monoxime, ITBM) and its complexes with Pd(II) and Zn(II) metal ions ([M(ITBM)2]Cl2) were synthesized and characterized in the present study. The formulated complexes were evaluated for in vitro antioxidant activity as radical scavengers against 1,1-diphenyl-2-picrylhydrazyl radicals (DPPH•). According to the results, antioxidant activity of Pd complex (IC50=36 mg L-1) was more effective than that of Zn(II) complex (IC50=72 mg L-1). Biophysical techniques along with computational modeling were employed to examine the binding of these complexes with human serum albumin (HSA) as the model protein. The trial findings revealed an interaction between Schiff base complexes and HSA with a modest binding affinity [Kb=6.31(±0.11)×104 M-1 for Zn(II) complex and 0.71(±0.05)×104 M-1 for Pd(II) complex at 310 K]. An intense fluorescence quenching of protein through a static quenching mechanism was occurred due to the binding of both complexes to HSA. Hydrogen bonds and van der Waals forces in both examined systems were the main stabilizing forces in the development of drug-protein complex. Based on far-UV-CD observations, the content of α-helical structure in the protein was reduced through induction by both complexes. Analysis of protein-ligand docking demonstrated binding of the two Schiff base complexes to residues placed in the IIA subdomain of HSA. In addition, Zn complex with HSA showed a stronger binding ability than that of Pd complex.Communicated by Ramaswamy H. Sarma.


Subject(s)
Diacetyl/analogs & derivatives , Lead/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Zinc/chemistry , Binding Sites , Carrier Proteins , Density Functional Theory , Diacetyl/chemical synthesis , Diacetyl/chemistry , Diacetyl/pharmacology , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , Ligands , Models, Theoretical , Molecular Structure , Protein Binding , Schiff Bases/chemistry , Spectrum Analysis , Structure-Activity Relationship , Thermodynamics
7.
Sci Rep ; 9(1): 1400, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30710127

ABSTRACT

The widespread use of electronic cigarettes (e-cigarettes or e-cig) is a growing public health concern. Diacetyl and its chemical cousin 2,3-pentanedione are commonly used to add flavors to e-cig; however, little is known about how the flavoring chemicals may impair lung function. Here we report that the flavoring chemicals induce transcriptomic changes and perturb cilia function in the airway epithelium. Using RNA-Seq, we identified a total of 163 and 568 differentially expressed genes in primary normal human bronchial epithelial (NHBE) cells that were exposed to diacetyl and 2,3-pentanedione, respectively. DAVID pathway analysis revealed an enrichment of cellular pathways involved in cytoskeletal and cilia processes among the set of common genes (142 genes) perturbed by both diacetyl and 2,3-pentanedione. Consistent with this, qRT-PCR confirmed that the expression of multiple genes involved in cilia biogenesis was significantly downregulated by diacetyl and 2,3-pentanedione in NHBE cells. Furthermore, immunofluorescence staining showed that the number of ciliated cells was significantly decreased by the flavoring chemicals. Our study indicates that the two widely used e-cig flavoring chemicals impair the cilia function in airway epithelium and likely contribute to the adverse effects of e-cig in the lung.


Subject(s)
Bronchi/cytology , Cilia/physiology , Cytoskeleton/metabolism , Diacetyl/metabolism , Epithelial Cells/physiology , Flavoring Agents/metabolism , Lung/metabolism , Cells, Cultured , Diacetyl/analogs & derivatives , Electronic Nicotine Delivery Systems , Humans , Inhalation Exposure/adverse effects , Lung/pathology , Transcriptome
8.
Plant Biol (Stuttg) ; 21(2): 352-360, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30472775

ABSTRACT

This study aimed to examine the evidence of direct interaction among actin, myosin and phosphatidylinositol 3-kinase (PI3K) in the polarisation and formation of the tetraspore germ tube of Gelidium floridanum. After release, tetraspores were exposed to cytochalasin B, latrunculin B, LY294002 and BDM for a period of 6 h. In control samples, formation of the germ tube occurred after the experimental period, with cellulose formation and elongated chloroplasts moving through the tube region in the presence of F-actin. In the presence of cytochalasin B, an inhibitor of F-actin, latrunculin B, an inhibitor of G-actin, and BDM, a myosin inhibitor, tetraspores showed no formation of the germ tube or cellulose. Spherical-shaped chloroplasts were observed in the central region with a few F-actin filaments in the periphery of the cytoplasm. Tetraspores treated with LY294002, a PI3K inhibitor, showed no formation of the tube at the highest concentrations. Polarisation of cytoplasmic contents did not occur, only cellulose formation. It was concluded that F-actin directs the cell wall components and contributes to the maintenance of chloroplast shape and elongation during germ tube formation. PI3K plays a fundamental role in signalling for the asymmetric polarisation of F-actin. Thus, F-actin regulates the polarisation and germination processes of tetraspores of G. floridanum.


Subject(s)
Actin Cytoskeleton/metabolism , Myosins/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Rhodophyta/metabolism , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Wall/metabolism , Chloroplasts/metabolism , Chromones/pharmacology , Cytochalasins , Diacetyl/analogs & derivatives , Diacetyl/pharmacology , Morpholines/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Plant Structures/growth & development , Plant Structures/metabolism , Rhodophyta/drug effects , Rhodophyta/growth & development , Thiazolidines/pharmacology
9.
J Vis Exp ; (124)2017 06 04.
Article in English | MEDLINE | ID: mdl-28605368

ABSTRACT

Murine cardiomyocytes have been extensively used for in vitro studies of cardiac physiology and new therapeutic strategies. However, multicellular preparations of dissociated cardiomyocytes are not representative of the complex in vivo structure of cardiomyocytes, non-myocytes and extracellular matrix, which influences both mechanical and electrophysiological properties of the heart. Here we describe a technique to prepare viable ventricular slices of adult mouse hearts with a preserved in vivo like tissue structure, and demonstrate their suitability for electrophysiological recordings. After excision of the heart, ventricles are separated from the atria, perfused with Ca2+-free solution containing 2,3-butanedione monoxime and embedded in a 4% low-melt agarose block. The block is placed on a microtome with a vibrating blade, and tissue slices with a thickness of 150-400 µm are prepared keeping the vibration frequency of the blade at 60-70 Hz and moving the blade forward as slowly as possible. Thickness of the slices depends on the further application. Slices are stored in ice cold Tyrode's solution with 0.9 mM Ca2+ and 2,3-butanedione monoxime (BDM) for 30 min. Afterwards, slices are transferred to 37 °C DMEM for 30 min to wash out the BDM. Slices can be used for electrophysiological studies with sharp electrodes or micro electrode arrays, for force measurements to analyze contractile function or to investigate the interaction of transplanted stem cell-derived cardiomyocytes and host tissue. For sharp electrode recordings, a slice is placed into a 3 cm cell culture dish on the heating plate of an inverted microscope. The slice is stimulated with a unipolar electrode, and intracellular action potentials of cardiomyocytes within the slice are recorded with a sharp glass electrode.


Subject(s)
Ventricular Function , Action Potentials/physiology , Animals , Diacetyl/analogs & derivatives , Diacetyl/pharmacology , Electrodes , Electrophysiological Phenomena , Induced Pluripotent Stem Cells/transplantation , Mice , Myocytes, Cardiac/physiology
10.
Anal Chim Acta ; 974: 54-62, 2017 Jun 29.
Article in English | MEDLINE | ID: mdl-28535881

ABSTRACT

In this study an innovative method was introduced for selective and precise determination of urea in various real samples including urine, blood serum, soil and water. The method was based on the square wave voltammetry determination of an electroactive product, generated during diacetylmonoxime reaction with urea. A carbon paste electrode, modified with multi-walled carbon nanotubes (MWCNTs) was found to be an appropriate electrochemical transducer for recording of the electrochemical signal. It was found that the chemical reaction conditions influenced the analytical signal directly. The calibration graph of the method was linear in the range of 1 × 10-7- 1 × 10-2 mol L-1. The detection limit was calculated to be 52 nmol L-1. Relative standard error of the method was also calculated to be 3.9% (n = 3). The developed determination procedure was applied for urea determination in various real samples including soil, urine, plasma and water samples.


Subject(s)
Diacetyl/analogs & derivatives , Electrochemical Techniques , Nanotubes, Carbon , Urea/analysis , Diacetyl/chemistry , Electrodes , Humans , Plasma/chemistry , Soil/chemistry , Urine/chemistry , Water/chemistry
11.
J Agric Food Chem ; 65(10): 2136-2140, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-28215079

ABSTRACT

Soybean oil is one of the most widely consumed vegetable oils. However, under photooxidative conditions, this oil develops a beany and green off-odor through a mechanism that has not yet been elucidated. Upon photooxidation, 3-methyl-2,4-nonanedione (3-MND) produces a strong aroma. In this study, the effect of furan fatty acids and 3-MND on odor reversion in soybean oil was investigated. Our findings suggest that the observed light-induced off-odor was likely attributable to the furan fatty acids present in the oil through the generation of 3-MND. While 3-MND may not be directly responsible for the development of light-induced off-odor, this compound appears to be involved because off-odor was detected in canola oil samples containing added 3-MND. In addition, in the present work, 3-hydroxy-3-methyl-2,4-nonanedione, which is derived from 3-MND, was identified for the first time in light-exposed soybean oil and shown to be one of the compounds responsible for odor reversion.


Subject(s)
Alkanes/chemistry , Diacetyl/analogs & derivatives , Fatty Acids/chemistry , Furans/chemistry , Soybean Oil/chemistry , Diacetyl/chemistry , Light , Odorants/analysis , Soybean Oil/radiation effects
12.
Biochem Biophys Res Commun ; 484(3): 579-585, 2017 03 11.
Article in English | MEDLINE | ID: mdl-28153735

ABSTRACT

The chief chemotherapeutic drug, cisplatin had common bad effects such as nephrotoxicity, ototoxicity and bone marrow depression. This led us to develop a new potential anticancer drug based on nickel metal ion that may be less toxic. Nickel(II) diacetyl monoxime-2-pyridyl hydrazone complex cytoprotective effect, superoxide dismutase (SOD)-like activity and anticancer activities were studied. In vitro, the complex showed SOD-like activity of 86.62%. It was capable to kill 90.2% of Ehrlich ascites carcinoma (EAC) cells and to protect 92.48% of human RBCs. In vivo, the complex lowered the tumor burden markedly in a concentration-dependent manner. Noticeably, solid tumor growth was suppressed; tumor volume and weight were reduced and mice life span was lengthened. The hematological indices were improved, catalase activity was re-elevated and malondialdehyde (MDA) level was reversed towards normal. Nucleic acids, cholesterol, triglycerides, liver enzymes, urea and creatinine contents were reduced to near normal ranges. Glutathione (GSH), SOD, albumin and total protein levels were increased. In conclusion, our results revealed that the complex has the ability to suppress Ehrlich solid tumor growth in mice with minimal side effects. This may possibly via its redox activity. Surprisingly, nickel complex antitumor activities were more potent than those of cisplatin.


Subject(s)
Apoptosis/drug effects , Carcinoma, Ehrlich Tumor/drug therapy , Carcinoma, Ehrlich Tumor/pathology , Cell Proliferation/drug effects , Hydrazones/administration & dosage , Nickel/administration & dosage , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Diacetyl/administration & dosage , Diacetyl/analogs & derivatives , Diacetyl/chemistry , Dose-Response Relationship, Drug , Feasibility Studies , Female , Hydrazones/chemistry , Mice , Nickel/chemistry
13.
J Hazard Mater ; 324(Pt B): 593-598, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-27852519

ABSTRACT

Gold nanoparticles (GNPs) functionalized with ethylenediamine-lanthanide complexes (Eu-GNPs and Tb-GNPs) were used for the selective fluorescent detection of dipicolinic acid (DPA), a unique biomarker of bacterial spores, in water. Particles were characterized by transmission electron microscopy and zeta potential measurements. The coordination of DPA to the lanthanides resulted in the enhancement of the fluorescence. A selective response to DPA was observed over the nonselective binding of aromatic ligands. The ligand displacement strategy were also employed for the ratiometric fluorescent detection of DPA. 4,4,4-trifluoro-1-(2-naphthyl)-1,3-butanedion (TFNB) was chosen as an antenna to synthesize ternary complexes. The addition of DPA on EuGNP:TFNB ternary complex quenched the initial emission of the complex at 615nm and increased the TFNB emission at 450nm when excited at 350nm. The results demonstrated that the ratiometric fluorescent detection of DPA was achieved by ligand displacement strategy.


Subject(s)
Gold/chemistry , Lanthanoid Series Elements/chemistry , Luminescent Measurements/methods , Metal Nanoparticles/chemistry , Picolinic Acids/analysis , Spores, Bacterial/isolation & purification , Biomarkers , Diacetyl/analogs & derivatives , Diacetyl/chemistry , Energy Transfer , Naphthalenes/chemistry , Water Microbiology/standards
14.
Chem Senses ; 42(3): 181-193, 2017 03 01.
Article in English | MEDLINE | ID: mdl-27916747

ABSTRACT

Key food odorants are the most relevant determinants by which we detect, recognize, and hedonically evaluate the aroma of foods and beverages. Odorants are detected by our chemical sense of olfaction, comprising a set of approximately 400 different odorant receptor types. However, the specific receptor activity patterns representing the aroma percepts of foods or beverages, as well as the key food odorant agonist profiles of single-odorant receptors, are largely unknown. We aimed to establish comprehensive key food odorant agonist profiles of 2 unrelated, broadly tuned receptors, OR1A1 and OR2W1, that had been associated thus far with mostly non-key food odorants and shared some of these agonists. By screening both receptors against 190 key food odorants in a cell-based luminescence assay, we identified 14 and 18 new key food odorant agonists for OR1A1 and OR2W1, respectively, with 3-methyl-2,4-nonanedione emerging as the most potent agonist for OR1A1 by 3 orders of magnitude, with a submicromolar half maximal effective concentration. 3-Methyl-2,4-nonanedione has been associated with a prune note in oxidized wine and is an aroma determinant in tea and apricots. Further screening against the entire set of 391 human odorant receptors revealed that 30 or 300 µmol/L 3-methyl-2,4-nonanedione activated only 1 receptor, OR1A1, suggesting a unique role of OR1A1 for the most sensitive detection of this key food odorant in wine, tea, and other food matrices.


Subject(s)
Alkanes/analysis , Diacetyl/analogs & derivatives , Odorants/analysis , Receptors, Odorant/metabolism , Tea/chemistry , Wine/analysis , Alkanes/pharmacology , Cells, Cultured , Diacetyl/analysis , Diacetyl/pharmacology , HEK293 Cells , Humans , Receptors, Odorant/agonists , Receptors, Odorant/genetics
15.
Nan Fang Yi Ke Da Xue Xue Bao ; 36(5): 633-8, 2016 May.
Article in Chinese | MEDLINE | ID: mdl-27222176

ABSTRACT

OBJECTIVE: To investigate the Effect of 2,3-butanedione monoxime (BDM) on calcium paradox-induced heart injury and its underlying mechanisms. METHODS: Thirty-two adult male SD rats were randomized into 4 groups, namely the control group, BDM treatment control group, calcium paradox group, and BDM treatment group. Isolated Sprague Dawley male rat hearts underwent Langendorff perfusion and the left ventricular pressure (LVP) and left ventricular end-diastolic pressure (LVEDP) were monitored. Left ventricular developed pressure (LVDP) was calculated to evaluate the myocardial performance. Lactate dehydrogenase (LDH) content in the coronary flow was determined. Triphenyltetrazolium chloride staining was used to measure the infarct size, and myocardial cell apoptosis was tested with TUNEL method. Western blotting was used to determine the expression of cleaved caspase-3 and cytochrome c. RESULTS: Compared with the control group, BDM at 20 mmol/L had no effect on cardiac performance, cell death, apoptotic index or the content of LDH, cleaved caspase-3 and cytochrome c at the end of perfusion under control conditions (P>0.05). Calcium paradox treatment significantly decreased the cardiac function and the level of LVDP and induced a larger infarct size (P<0.01), an increased myocardial apoptosis index (P<0.01), and up-regulated expressions of cleaved caspase-3 and cytochrome c (P<0.01). BDM (20 mmol/L) significantly attenuated these effects induced by calcium paradox, and markedly down-regulated the levels of LVEDP and LDH (P<0.01), lowered myocardial apoptosis index, decreased the content of cleaved caspase-3 and cytochrome c (P<0.01), increased LVDP, and reduced the infarct size (P<0.01). CONCLUSION: BDM suppresses cell apoptosis and contracture and improves heart function and cell survival in rat hearts exposed to calcium paradox, suggesting the value of BDM as an potential drug for myocardial ischemia reperfusion injur.


Subject(s)
Calcium/adverse effects , Diacetyl/analogs & derivatives , Myocardial Reperfusion Injury/drug therapy , Animals , Apoptosis , Caspase 3/metabolism , Cytochromes c/metabolism , Diacetyl/pharmacology , Heart/drug effects , Heart/physiopathology , In Vitro Techniques , L-Lactate Dehydrogenase/metabolism , Male , Myocardial Reperfusion Injury/chemically induced , Rats , Rats, Sprague-Dawley , Ventricular Function, Left
16.
J Oleo Sci ; 65(5): 447-50, 2016 May 01.
Article in English | MEDLINE | ID: mdl-27086994

ABSTRACT

A beany and green off-odor is developed in soy bean oil (SBO) under light-induced oxidative conditions. 3-Methyl-2,4-nonanedione (3-MND) was inferred as the compound responsible for the off-odor. In this study, we designed a simple quantification method for 3-MND in SBO, and evaluated the relationship between the 3-MND concentration and the intensity of the off-odor. 3-MND was analyzed by GC/MS with a thermal desorption unit system. By our method, the 3-MND concentration was found to increase with storage days and the SBO content under light exposure, and there was a high correlation between the measured 3-MND concentration and the intensity of the light-induced off-odor in SBO (R = 0.9586).


Subject(s)
Alkanes/analysis , Diacetyl/analogs & derivatives , Light , Odorants/analysis , Soybean Oil/chemistry , Diacetyl/analysis
17.
Am J Emerg Med ; 34(6): 1053-8, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27041248

ABSTRACT

PURPOSE: Ischemic contracture compromises the hemodynamic effectiveness of cardiopulmonary resuscitation (CPR) and resuscitability from cardiac arrest. In a pig model of cardiac arrest, 2,3-butanedione monoxime (BDM) attenuated ischemic contracture. We investigated the effects of different doses of BDM to determine whether increasing the dose of BDM could improve the hemodynamic effectiveness of CPR further, thus ultimately improving resuscitability. METHODS: After 16minutes of untreated ventricular fibrillation and 8minutes of basic life support, 36 pigs were divided randomly into 3 groups that received 50mg/kg (low-dose group) of BDM, 100mg/kg (high-dose group) of BDM, or an equivalent volume of saline (control group) during advanced cardiovascular life support. RESULTS: During advanced cardiovascular life support, the control group showed an increase in left ventricular (LV) wall thickness and a decrease in LV chamber area. In contrast, the BDM-treated groups showed a decrease in the LV wall thickness and an increase in the LV chamber area in a dose-dependent fashion. Mixed-model analyses of the LV wall thickness and LV chamber area revealed significant group effects and group-time interactions. Central venous oxygen saturation at 3minutes after the drug administration was 21.6% (18.4-31.9), 39.2% (28.8-53.7), and 54.0% (47.5-69.4) in the control, low-dose, and high-dose groups, respectively (P<.001). Sustained restoration of spontaneous circulation was attained in 7 (58.3%), 10 (83.3%), and 12 animals (100%) in the control, low-dose, and high-dose groups, respectively (P=.046). CONCLUSION: 2,3-Butanedione monoxime administered during CPR attenuated ischemic contracture and improved the resuscitability in a dose-dependent fashion.


Subject(s)
Cardiopulmonary Resuscitation , Diacetyl/analogs & derivatives , Enzyme Inhibitors/therapeutic use , Heart Arrest/therapy , Ischemic Contracture/prevention & control , Animals , Diacetyl/therapeutic use , Disease Models, Animal , Dose-Response Relationship, Drug , Heart Arrest/etiology , Ischemic Contracture/etiology , Swine , Ventricular Fibrillation/complications , Ventricular Function, Left
18.
Am J Physiol Cell Physiol ; 310(8): C692-700, 2016 04 15.
Article in English | MEDLINE | ID: mdl-26911280

ABSTRACT

The phosphorylation of the myosin regulatory light chain (RLC) is an important modulator of skeletal muscle performance and plays a key role in posttetanic potentiation and staircase potentiation of twitch contractions. The structural basis for these phenomena within the filament lattice has not been thoroughly investigated. Using a synchrotron radiation source at SPring8, we obtained X-ray diffraction patterns from skinned rabbit psoas muscle fibers before and after phosphorylation of myosin RLC in the presence of myosin light chain kinase, calmodulin, and calcium at a concentration below the threshold for tension development ([Ca(2+)] = 10(-6.8)M). After phosphorylation, the first myosin layer line slightly decreased in intensity at ∼0.05 nm(-1)along the equatorial axis, indicating a partial loss of the helical order of myosin heads along the thick filament. Concomitantly, the (1,1/1,0) intensity ratio of the equatorial reflections increased. These results provide a firm structural basis for the hypothesis that phosphorylation of myosin RLC caused the myosin heads to move away from the thick filaments towards the thin filaments, thereby enhancing the probability of interaction with actin. In contrast, 2,3-butanedione monoxime (BDM), known to inhibit contraction by impeding phosphate release from myosin, had exactly the opposite effects on meridional and equatorial reflections to those of phosphorylation. We hypothesize that these antagonistic effects are due to the acceleration of phosphate release from myosin by phosphorylation and its inhibition by BDM, the consequent shifts in crossbridge equilibria leading to opposite changes in abundance of the myosin-ADP-inorganic phosphate complex state associated with helical order of thick filaments.


Subject(s)
Diacetyl/analogs & derivatives , Muscle Contraction/physiology , Muscle Fibers, Skeletal/physiology , Muscle Fibers, Skeletal/ultrastructure , Myosin Light Chains/physiology , Myosin Light Chains/ultrastructure , Animals , Cells, Cultured , Diacetyl/pharmacology , Male , Muscle Contraction/drug effects , Muscle Fibers, Skeletal/drug effects , Phosphorylation/drug effects , Rabbits , X-Ray Diffraction/methods
19.
Physiol Rep ; 4(1)2016 Jan.
Article in English | MEDLINE | ID: mdl-26733241

ABSTRACT

Experiments in isolated ventricular cardiomyocytes have greatly facilitated the study of cellular and subcellular physiology in the heart. However, the isolation and culture of high-quality adult murine ventricular cardiomyocytes can be technically challenging. In most experimental protocols, the culture of viable adult murine cardiomyocytes for prolonged time periods is achieved with the addition of the myosin II ATPase inhibitors blebbistatin and/or 2,3-butanedione monoxime (BDM). These drugs are added to increase cell viability and life span by inhibiting spontaneous cardiomyocyte contraction, thereby preventing calcium overload, cell hypercontracture, and cell death. While the addition of BDM has been reported to prolong the life span of isolated adult murine cardiomyocytes, it is also associated with several off-target effects. Here, we report a novel off-target effect, in which BDM inhibits mitochondrial respiration by acting directly on the electron transport chain to reduce cell viability. In contrast, when cells were cultured with blebbistatin alone, cells survived for longer, and no metabolic off-target effects were observed. Based on these novel observations, we recommend that culture media for isolated mouse ventricular cardiomyocytes should be supplemented with blebbistatin alone, as BDM has the potential to affect mitochondrial respiration and cell viability, effects which may impact adversely on subsequent experiments.


Subject(s)
Diacetyl/analogs & derivatives , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Animals , Cell Culture Techniques/methods , Cell Respiration/drug effects , Cell Respiration/physiology , Cell Survival/drug effects , Cell Survival/physiology , Cells, Cultured , Diacetyl/pharmacology , Enzyme Inhibitors/pharmacology , Mice , Mice, Inbred C57BL
20.
Microscopy (Oxf) ; 65(3): 211-21, 2016 06.
Article in English | MEDLINE | ID: mdl-26754563

ABSTRACT

The pennate diatom, Bacillaria paxillifer, forms a colony in which adjacent cells glide smoothly and almost continuously, yet no obvious apparatus driving the movement, such as flagella or cilia, is observed. Thus far, neither the mechanism nor physiological significance of this movement has been well understood. Here, we report quantitative analysis of the gliding motion of B. paxillifer and morphological analysis of this diatom with light and electron microscopes. The gliding of pairs of adjacent B. paxillifer cells in a colony was cyclic with rather constant periods while the average gliding period varied from a few seconds to multiples of 10 s among colonies. The gliding was compromised reversibly by inhibitors for actin and myosin, suggesting involvement of the actomyosin system. Indeed, we observed two closely apposed actin bundles near the raphe by fluorescence-labeled phalloidin staining. Using electron microscopy, we observed filamentous structures that resemble the actin bundles seen with fluorescence microscopy, and we also found novel electron-dense structures located between the plasma membrane and these actin-like filaments. From these and other observations, we suggest that B. paxillifer also uses actin bundles and propose a putative myosin as a molecular motor in the gliding of unicellular diatoms.


Subject(s)
Actomyosin/metabolism , Cell Membrane/physiology , Diatoms/physiology , Diatoms/ultrastructure , Movement/physiology , Actin Cytoskeleton , Actins/antagonists & inhibitors , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cytochalasins/pharmacology , Diacetyl/analogs & derivatives , Diacetyl/pharmacology , Enzyme Inhibitors/pharmacology , Microscopy, Electron , Microscopy, Fluorescence , Molecular Motor Proteins/metabolism , Myosins/antagonists & inhibitors , Thiazolidines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...